Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e27508, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560254

RESUMEN

Objective: To explore the effect of human urine-derived stem cells (husc) in improving the neurological function of rats with cerebral ischemia-reperfusion (CIR), and report new molecular network by bioinformatics, combined with experiment validation. Methods: After CIR model was established, and husc were transplanted into the lateral ventricle of rats,neurological severe score (NSS) andgene network analysis were performed. Firstly, we input the keywords "Cerebral reperfusion" and "human urine stem cells" into Genecard database and merged data with findings from PubMed so as to get their targets genes, and downloaded them to make Venny intersection plot. Then, Gene ontology (GO) analysis, kyoto encyclopedia of genes and genomes (KEGG) pathway analysis and protein-protein interaction (PPI) were performed to construct molecular network of core genes. Lastly, the expressional level of core genes was validated via quantitative real-time polymerase chain reaction (qRT-PCR), and localized by immunofluorescence. Results: Compared with the Sham group, the neurological function of CIR rats was significantly improved after the injection of husc into the lateral ventricle; at 14 days, P = 0.028, which was statistically significant. There were 258 overlapping genes between CIR and husc, and integrated with 252 genes screened from PubMed and CNKI. GO enrichment analysis were mainly involved neutrophil degranulation, neutrophil activation in immune response and platelet positive regulation of degranulation, Hemostasis, blood coagulation, coagulation, etc. KEGG pathway analysis was mainly involved in complement and coagulation cascades, ECM-receptor. Hub genes screened by Cytoscape consist ofCD44, ACTB, FN1, ITGB1, PLG, CASP3, ALB, HSP90AA1, EGF, GAPDH. Lastly, qRT-PCR results showed statistic significance (P < 0.05) in ALB, CD44 and EGF before and after treatment, and EGF immunostaining was localized in neuron of cortex. Conclusion: husc transplantation showed a positive effect in improving neural function of CIR rats, and underlying mechanism is involved in CD44, ALB, and EGF network.

2.
J Phys Chem Lett ; 15(12): 3354-3362, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38498427

RESUMEN

This study addresses the critical challenge in alkaline direct formate fuel cells (DFFCs) of slow formate oxidation reaction (FOR) kinetics as a result of strong hydrogen intermediate (Had) adsorption on Pd catalysts. We developed WO3-supported Pd nanoparticles (EG-Pd/WO3) via an organic reduction method using ethylene glycol (EG), aiming to modulate the d-band center of Pd and alter Had adsorption dynamics. Cyclic voltammetry demonstrated significantly improved Had desorption kinetics in EG-Pd/WO3 catalysts. Density functional theory (DFT) calculations revealed that the presence of EG reduces the d-band center of Pd, leading to weaker Pd-H bonds and enhanced Had desorption during the FOR. This research provides a new approach to optimize catalyst efficiency in DFFCs, highlighting the potential for more effective and sustainable energy solutions through advanced material engineering.

3.
ACS Appl Mater Interfaces ; 16(7): 8742-8750, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38340053

RESUMEN

Direct formate fuel cells have gained traction due to their eco-friendly credentials and inherent safety. However, their potential is hampered by the kinetic challenges of the formate oxidation reaction (FOR) on Pd-based catalysts, chiefly due to the unfavorable adsorption of hydrogen species (Had). These species clog the active sites, hindering efficient catalysis. Here, we introduce a straightforward strategy to remedy this bottleneck by incorporating Pd with Cu to expedite the removal of Pd-Had in alkaline media. Notably, Cu plays a pivotal role in bolstering the concentration of hydroxyl adsorbates (OHad) on the surface of catalyst. These OHad species can react with Had, effectively unblocking the active sites for FOR. The as-synthesized catalyst of PdCu/C exhibits a superior FOR performance, boasting a remarkable mass activity of 3.62 A mg-1. Through CO-stripping voltammetry, we discern that the presence of Cu in Pd markedly speeds up the formation of adsorbed hydroxyl species (OHad) at diminished potentials. This, in turn, aids the oxidative removal of Pd-Had, leveraging a synergistic mechanism during FOR. Density functional theory computations further reveal intensified interactions between adsorbed oxygen species and intermediates, underscoring that the Cu-Pd interface exhibits greater oxyphilicity compared to pristine Pd. In this study, we present both experimental and theoretical corroborations, unequivocally highlighting that the integrated copper species markedly amplify the generation of OHad, ensuring efficient removal of Had. This work paves the way, shedding light on the strategic design of high-performing FOR catalysts.

4.
Heliyon ; 10(1): e22808, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38169755

RESUMEN

Spinal cord injury (SCI) is a severe complication of spinal trauma with high disability and mortality rates. Effective therapeutic methods to alleviate neurobehavioural deficits in patients with SCI are still lacking. In this study, we established a spinal cord contusion (SCC) model in adult Sprague Dawley rats. Induced pluripotent stem cell-derived A2B5+ oligodendrocyte precursor cells (iP-A2B5+OPCs) were obtained from mouse embryonic fibroblasts and injected into the lesion sites of SCC rats. Serological testing and magnetic resonance imaging were employed to determine the effect of iP-A2B5+OPCs cell therapy. The Basso-Beattie-Bresnahan score and inclined plane test were performed on days 1, 3, 7, and 14 after cell transplantation, respectively. Differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) were detected by microarray analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to analyse the biological functions of these lncRNAs and mRNAs. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to verify variations in the expression of crucial target genes. The results demonstrated that induced pluripotent stem cells exhibited embryonic stem cell-like morphology and could differentiate into diverse neural cells dominated by oligodendrocytes. The neurobehavioural performance of rats treated with iP-A2B5+OPCs transplantation was better than that of rats with SCC without cell transplantation. Notably, we found that 22 lncRNAs and 42 mRNAs were concurrently altered after cell transplantation, and the key lncRNA (NR_037671) and target gene (Cntnap5a) were identified in the iP-A2B5+OPCs group. Moreover, RT-qPCR revealed that iP-A2B5+OPCs transplantation reversed the downregulation of NR_037671 induced by SCC. Our findings indicated that iP-A2B5+OPCs transplantation effectively improves neurological function recovery after SCC, and the mechanism might be related to alterations in the expression of lncRNAs and mRNAs, such as NR_037671 and Cntnap5a.

5.
Toxicol Appl Pharmacol ; 481: 116732, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37871735

RESUMEN

Metformin is commonly used, but approximately 20% of patients experience gastrointestinal intolerance, leading to medication discontinuation for unclear reasons and a lack of effective management strategies. In this study, the 18 fecal and blood samples were analyzed using 16S rRNA and mRNA transcriptome, respectively. These samples included 3 fecal and 4 blood from metformin-tolerant T2D patients before and after metformin treatment (T and Ta), 3 fecal and 5 blood from metformin-intolerant T2D patients before and after treatment (TS and TSa), and 6 fecal samples from healthy controls. The results showed that certain anti-inflammatory gut bacteria and gene, such as Barnesiella (p = 0.046), Parabacteroides goldsteinii (p = 0.016), and the gene JUND (p = 0.0002), exhibited higher levels in metformin-intolerant patients, and which decreased after metformin treatment (p < 0.05). This potentially invalidates patients' anti-inflammatory effect and intestinal mucus barrier protection, which may lead to alterations in intestinal permeability, decreased gut barrier function, and gastrointestinal symptoms, including diarrhea, bloating, and nausea. After metformin treatment, primary bile acids (PBAs) production species: Weissella confusa, Weissella paramesenteroides, Lactobacillus brevis, and Lactobacillus plantarum increased (p < 0.05). The species converting PBAs to secondary bile acids (SBAs): Parabacteroides distasonis decreased (p < 0.05). This might result in accumulation of PBAs, which also may lead to anti-inflammatory gene JUND and SQSTM1 downregulated. In conclusion, this study suggests that metformin intolerance may be attributed to a decrease in anti-inflammatory-related flora and genes, and also alterations in PBAs accumulation-related flora. These findings open up possibilities for future research targeting gut flora and host genes to prevent metformin intolerance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Humanos , Metformina/uso terapéutico , Microbioma Gastrointestinal/genética , Diabetes Mellitus Tipo 2/complicaciones , ARN Ribosómico 16S , Ácidos y Sales Biliares , Antiinflamatorios/uso terapéutico
6.
Front Aging Neurosci ; 15: 1063861, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37539343

RESUMEN

Background: With the increase of age, multiple physiological functions of people begin gradually degenerating. Regardless of natural aging or pathological aging, the decline in cognitive function is one of the most obvious features in the process of brain aging. Brain aging is a key factor for several neuropsychiatric disorders and for most neurodegenerative diseases characterized by onset typically occurring late in life and with worsening of symptoms over time. Therefore, the early prevention and intervention of aging progression are particularly important. Since there is no unified conclusion about the plasma diagnostic biomarkers of brain aging, this paper innovatively employed the combined multi-omics analysis to delineate the plasma markers of brain aging. Methods: In order to search for specific aging markers in plasma during cerebral cortex aging, we used multi-omics analysis to screen out differential genes/proteins by integrating two prefrontal cortex (PFC) single-nucleus transcriptome sequencing (snRNA-seq) datasets and one plasma proteome sequencing datasets. Then plasma samples were collected from 20 young people and 20 elder people to verify the selected differential genes/proteins with ELISA assay. Results: We first integrated snRNA-seq data of the post-mortem human PFC and generated profiles of 65,064 nuclei from 14 subjects across adult (44-58 years), early-aging (69-79 years), and late-aging (85-94 years) stages. Seven major cell types were classified based on established markers, including oligodendrocyte, excitatory neurons, oligodendrocyte progenitor cells, astrocytes, microglia, inhibitory neurons, and endotheliocytes. A total of 93 cell-specific genes were identified to be significantly associated with age. Afterward, plasma proteomics data from 2,925 plasma proteins across 4,263 young adults to nonagenarians (18-95 years old) were combined with the outcomes from snRNA-seq data to obtain 12 differential genes/proteins (GPC5, CA10, DGKB, ST6GALNAC5, DSCAM, IL1RAPL2, TMEM132C, VCAN, APOE, PYH1R, CNTN2, SPOCK3). Finally, we verified the 12 differential genes by ELISA and found that the expression trends of five biomarkers (DSCAM, CNTN2, IL1RAPL2, CA10, GPC5) were correlated with brain aging. Conclusion: Five differentially expressed proteins (DSCAM, CNTN2, IL1RAPL2, CA10, GPC5) can be considered as one of the screening indicators of brain aging, and provide a scientific basis for clinical diagnosis and intervention.

7.
ACS Appl Mater Interfaces ; 15(23): 28790-28798, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37268875

RESUMEN

The rational design of electrocatalysts for formate oxidation reaction (FOR) in alkaline media is crucial to promote the practical applications of direct formate fuel cells (DFFCs). The FOR kinetic on palladium (Pd) based electrocatalysts is strongly hindered by unfavorably adsorbed hydrogen (Had) as the major intermediate species blocking the active sites. Herein, we report a strategy of modulating the interfacial water network of dual-site Pd/FeOx/C catalyst to significantly enhance the desorption kinetics of Had during FOR. Aberration-corrected electron microscopy and synchrotron characterizations revealed the successful construction of Pd/FeOx interfaces on carbon support as a dual-site electrocatalyst for FOR. Electrochemical tests and in situ Raman spectroscopy results showed that Had could be effectively removed from the active sites of the as-designed Pd/FeOx/C catalyst. CO-stripping voltammetry and density functional theory calculations (DFT) demonstrated that the introduced FeOx could effectively accelerate the dissociative adsorption of water molecules on active sites, which accordingly generates adsorbed hydroxyl species (OHad) to facilitate the removal of Had during FOR. This work provides a novel route to develop advanced FOR catalysts for fuel cell applications.

8.
J Cell Mol Med ; 27(14): 1975-1987, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37340587

RESUMEN

The expression changes of baculovirus inhibitor of apoptosis repeat-containing protein5 in brain glioma after administration of Scutellarin was detected. To explore the effort of scutellarin on anti-glioma by downregulating BIRC5.The effect of scutellarin on tumour growth and animal survival was detected by administering scutellarin to nude mice subcutaneous tumour formation and SD rats in situ tumour formation models. A significantly different gene BIRC5 was found by using the combination of TCGA databases and network pharmacology. And then qPCR was performed to detect the expression of BIRC5 in glioma tissues, cells and normal brain tissues and glial cells. CCK-8 was used to detect the IC50 of scutellarin on glioma cells. The wound healing assay, flow cytometry and MTT test were used to detect the effect of scutellarin on the apoptosis and proliferation of glioma cells. The expression of BIRC5 in glioma tissues was significantly higher than that in normal brain tissues. Scutellarin can significantly reduce tumour growth and improve animal's survival. After scutellarin was administered, the expression of BIRC5 in U251 cells was significantly reduced. And after same time, apoptosis increased and cell proliferation was inhibited. This original research showed that scutellarin can promote the apoptosis of glioma cells and inhibit the proliferation by downregulating the expression of BIRC5.


Asunto(s)
Neoplasias Encefálicas , Glioma , Ratones , Ratas , Animales , Ratones Desnudos , Ratas Sprague-Dawley , Apoptosis , Proliferación Celular , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica
9.
BMC Mol Cell Biol ; 24(1): 8, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36879194

RESUMEN

OBJECTIVES: This study was designed to investigate to test the effect of exosomes from urine-derived mesenchymal stem cells (USCs) on the survival and viability of aging retinal ganglion cells (RGCs), and explored the preliminary related mechanisms. METHODS: Primary USCs were cultured and identified by immunofluorescence staining. Aging RGCs models were established by D-galactose treatment and identified by ß-Galactosidase staining. After treatment with USCs conditioned medium (with USCs removal), flow cytometry was performed to examine the apoptosis and cell cycle of RGCs. Cell viability of RGCs was detected by Cell-counting Kit 8 (CCK8) assay. Moreover, gene sequencing and bioinformatics analysis were applied to analyze the genetic variation after medium treatment in RGCs along with the biological functions of differentially expressed genes (DEGs). RESULTS: The number of apoptotic aging RGCs was significantly reduced in USCs medium-treated RGCs. Besides, USCs-derived exosomes exert significant promotion on the cell viability and proliferation of aging RGCs. Further, sequencing data analyzed and identified DEGs expressed in aging RGCs and aging RGCs treated with USCs conditioned medium. The sequencing outcomes demonstrated 117 upregulated genes and 186 downregulated genes in normal RGCs group vs aging RGCs group, 137 upregulated ones and 517 downregulated ones in aging RGCs group vs aging RGCs + USCs medium group. These DEGs involves in numerous positive molecular activities to promote the recovery of RGCs function. CONCLUSIONS: Collectively, the therapeutic potentials of USCs-derived exosomes include suppression on cell apoptosis, enhancement on cell viability and proliferation of aging RGCs. The underlying mechanism involves multiple genetic variation and changes of transduction signaling pathways.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Células Ganglionares de la Retina , Medios de Cultivo Condicionados/farmacología , División Celular
10.
Tissue Cell ; 79: 101926, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36126417

RESUMEN

OBJECTIVE: To investigate the ameliorative effect of urine-derived stem cells (USCs) conditioned medium on the aging retinal pigment epithelial (RPE) cells and explore the underlying mechanism. METHODS: The RPE cells were cultured, and aging RPE models were prepared by D-galactose treatment and identified by ß-Galactosidase staining. USCs were primarily cultured and identified by immunofluorescence staining. The proliferation and cell cycle of RPE cells in USCs conditioned medium (with USCs removal) were detected by CCK-8 assay and flow cytometry. Gene sequencing was applied to analyze the genetic variation with or without medium treatment. Bioinformatics analysis was used to investigate the biological functions of up- and downregulated differentially expressed genes after medium treatment. RESULTS: The cell morphology of aging RPE cells treated with the USCs medium were improved significantly and resembled normal RPE cells. In addition, the number of RPE cells increased with USCs medium, and the number of aging cells was significantly reduced after treatment with USCs medium. Moreover, the apoptosis rate of RPE cells was much lower in USCs medium group. The proportion of G1-phase RPE cells was significantly smaller and the proportion of S-phase RPE cells was significantly higher in the USCs medium group. It was found that there were 423 genes upregulated and 64 genes downregulated between the normal RPE cells and aging RPE cells, and 90 genes upregulated and 75 genes downregulated between the aging RPE cells and aging RPE cells cultured in USCs medium. CONCLUSIONS: Our data confirmed that the USCs could positively ameliorate the aging progression of RPE cells by regulating multiple gene network.


Asunto(s)
Células Epiteliales , Células Madre , Medios de Cultivo Condicionados/farmacología , Pigmentos Retinianos/metabolismo , Células Cultivadas , Epitelio Pigmentado de la Retina
11.
Brain Sci ; 12(8)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36009085

RESUMEN

Blood-based proteomic analysis is a routine practice for detecting the biomarkers of human disease. The results obtained from blood alone cannot fully reflect the alterations of nerve cells, including neurons and glia cells, in Alzheimer's disease (AD) brains. Therefore, the present study aimed to investigate novel potential AD biomarker candidates, through an integrated multi-omics approach in AD. We propose a comprehensive strategy to identify high-confidence candidate biomarkers by integrating multi-omics data from AD, including single-nuclei RNA sequencing (snRNA-seq) datasets of the prefrontal and entorhinal cortices, as wells as serum proteomic datasets. We first quantified a total of 124,658 nuclei, 8 cell types, and 3701 differentially expressed genes (DEGs) from snRNA-seq dataset of 30 human cortices, as well as 1291 differentially expressed proteins (DEPs) from serum proteomic dataset of 11 individuals. Then, ten DEGs/DEPs (NEBL, CHSY3, STMN2, MARCKS, VIM, FGD4, EPB41L2, PLEKHG1, PTPRZ1, and PPP1R14A) were identified by integration analysis of snRNA-seq and proteomics data. Finally, four novel candidate biomarkers (NEBL, EPB41L2, FGD4, and MARCKS) for AD further stood out, according to bioinformatics analysis, and they were verified by enzyme-linked immunosorbent assay (ELISA) verification. These candidate biomarkers are related to the regulation process of the actin cytoskeleton, which is involved in the regulation of synaptic loss in the AD brain tissue. Collectively, this study identified novel cell type-related biomarkers for AD by integrating multi-omics datasets from brains and serum. Our findings provided new targets for the clinical treatment and prognosis of AD.

12.
Nat Commun ; 13(1): 4769, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970934

RESUMEN

The origin of major volatiles nitrogen, carbon, hydrogen, and sulfur in planets is critical for understanding planetary accretion, differentiation, and habitability. However, the detailed process for the origin of Earth's major volatiles remains unresolved. Nitrogen shows large isotopic fractionations among geochemical and cosmochemical reservoirs, which could be used to place tight constraints on Earth's volatile accretion process. Here we experimentally determine N-partitioning and -isotopic fractionation between planetary cores and silicate mantles. We show that the core/mantle N-isotopic fractionation factors, ranging from -4‰ to +10‰, are strongly controlled by oxygen fugacity, and the core/mantle N-partitioning is a multi-function of oxygen fugacity, temperature, pressure, and compositions of the core and mantle. After applying N-partitioning and -isotopic fractionation in a planetary accretion and core-mantle differentiation model, we find that the N-budget and -isotopic composition of Earth's crust plus atmosphere, silicate mantle, and the mantle source of oceanic island basalts are best explained by Earth's early accretion of enstatite chondrite-like impactors, followed by accretion of increasingly oxidized impactors and minimal CI chondrite-like materials before and during the Moon-forming giant impact. Such a heterogeneous accretion process can also explain the carbon-hydrogen-sulfur budget in the bulk silicate Earth. The Earth may thus have acquired its major volatile inventory heterogeneously during the main accretion phase.

13.
Glob Chall ; 6(4): 2100130, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35433027

RESUMEN

Lignin condensation reactions are hard to avoid or control during separation, which is a deterrent to lignin isolation and post-conversation, especially for the full utilization of lignocelluloses. Selective protection of ß-aryl ether linkages in the isolation process is crucial to lignin valorization. Herein, a two-step acid/alkali separation method assisted with l-cysteine for eucalyptus lignin separation is developed, and the isolated l-cysteine lignins (LCLs) are comprehensively characterized by 2D NMR, 31P NMR, thioacidolysis, etc. Compared to the two-step control treatment, a much higher ß-O-4 content is preserved without reducing the separation efficiency assisted by l-cysteine, which is also significantly higher than alkali lignin and kraft lignin. The results of hydrogenolysis show that LCLs generate a much higher monomer yield than that of control sample. Structural analysis of LCLs suggests that lignin condensation reaction, to some extent, is suppressed by adding l-cysteine during the two-step acid/alkali separation. Further, mechanistic studies using dimeric model compound reveals that l-cysteine may be the α-carbon protective agent in the two-step separation. The role of l-cysteine in the two-step lignin isolation method provides novel insights to the selective fractionation of lignin from biomass, especially for the full valorization of lignocellulosic biomass.

14.
Front Chem ; 10: 844953, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360544

RESUMEN

We have developed a method to analyze all rare earth elements in silicate glasses and zircon minerals using a high lateral resolution secondary ion mass spectrometer (NanoSIMS). A 2nA O- primary beam was used to sputter a 7-8-µm diameter crater on the sample surface, and secondary positive ions were extracted for mass analysis using an accelerating voltage of 8 kV. A high mass resolving power of 9,400 at 10% peak height was attained to separate heavy REE from oxide of light REE. A multi-collector system combined with peak-jumping by magnetic field was adjusted to detect REEs and silicon-30 for calibration. Based on results of NIST SRM610 glass, sensitivities of REEs vary from 3 cps/ppm/nA of Lu to 13 cps/ppm/nA of Eu. Reproducibility of REE/Si ratios is better than 18% at 2σ. Secondary ion yields of REEs show positive relationships with their ionization potential of second valence. REEs of AS3, QGNG, and Torihama zircons were measured and calibrated against those of 91500 standard zircon. SIYs of REEs of zircon are identical to those of the glass standard. AS3 and QGNG data are generally consistent with those of previous work. Torihama REE data combined with the whole rock data provide partition coefficients of REEs between silicate melt and zircon. The relationship between these coefficients and ionic radius is explained by an elastic moduli model.

15.
J Tradit Chin Med ; 42(1): 96-101, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35294128

RESUMEN

OBJECTIVE: Yang-deficiency constitution (YADC) is a common unbalanced constitution that predisposes individuals to certain diseases. However, not all people with YADC manifest develop diseases. This calls for delineation of the underlying molecular mechanisms. Previous studies suggested that the gut microbiota and gene differential expression should be considered. METHODS: In the present study, we compared profiles of gut microbiota between four healthy YADC individuals and those of five healthy balanced constitution (BC) counterparts, based on 16S rRNA gene sequence analysis. Furthermore, YADC relevant genes identified by comparing 62 healthy YADC and 58 healthy BC individuals in total to perform intersection analysis, functional clustering and pathway enrichment analyses. RESULTS: The levels of harmful gut microbiota (Prevotellaceae, LDA score > 4.0, P = 0.0141) and beneficial gut microbiota (Ruminococcaceae, LDA score > 4.0, P = 0.0025, Faecalibacterium, LDA score > 4.0, P = 0.0484) were both elevated in healthy YADC individuals. Also, we found that the specific metabolic pathway with 2, 6-Dichloro-p-hydroquinone 1, 2-Dioxygenase (PcpA) as the core in gut microbiota and the glutathione transferase activity has been enriched by YADC relevant genes in healthy YADC individuals were both responsible for the detoxification of halogenated aromatic hydrocarbon substances. CONCLUSIONS: Both beneficial and harmful factors had been detected in healthy YADC individuals, functionally, they may have triggered homeostasis to maintain the health of individuals with YADC. The homeostasis may be maintained by beneficial and harmful factors from gut flora and genes. Future studies are expected to focus on halogenated aromatic hydrocarbons and their detoxification processes.


Asunto(s)
Microbioma Gastrointestinal , Homeostasis , Humanos , ARN Ribosómico 16S/genética , Deficiencia Yang
16.
Int J Biol Macromol ; 193(Pt A): 27-37, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34687763

RESUMEN

Exploration of the application prospects of cattail fibers (CFs) in natural composites, and other fields is important for the sustainable development of new, green, light-weight, functional biomass materials. In this study, the physical and chemical properties, micro/nano structure, and mechanical characteristics of CFs were investigated. The CFs have a low density (618.0 kg m-3). The results of transmission electron microscopy and tensile testing data indicated that the cattail trunk fiber (CTF) bundle is composed of parenchyma cells and solid stone cells, demonstrating high specific modulus (10.1 MPa∙m3·kg-1) and high elongation at break (3.9%). In turn, the cattail branch fiber (CBF) bundle is composed of parenchyma cells with specific "half-honeycomb" shape. The inner diaphragms divide these cells into the open cavities. This structural feature endows the CTF bundles with stable structure, good oil absorption and storage capacities. The chemical component and the Fourier transform infrared spectroscopy analyses show that the CFs have higher lignin content (20.6%) and wax content (11.5%), which are conducive to the improvement of corrosion resistance, thermal stability and lipophilic-hydrophobic property of CF. Finally, the thermogravimetric analysis indicates that its final degradation temperature is 404.5 °C, which is beneficial to the increase in processability of CFs-reinforced composites.


Asunto(s)
Celulosa , Nanoestructuras , Typhaceae , Celulosa/química , Celulosa/ultraestructura , Interacciones Hidrofóbicas e Hidrofílicas , Nanoestructuras/química , Nanoestructuras/ultraestructura , Temperatura , Resistencia a la Tracción , Typhaceae/química , Typhaceae/ultraestructura
17.
Pharm Biol ; 59(1): 311-320, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33784489

RESUMEN

CONTEXT: Current medicine for Alzheimer's disease (AD) cannot effectively reverse or block nerve injury. Traditional Chinese Medicine practice and research imply Aconiti lateralis Radix Praeparata (Fuzi) may meet this goal. OBJECTIVE: Analysing the anti-AD effect of Fuzi and its potential molecular mechanism. MATERIALS AND METHODS: AD model cells were treated with Fuzi in 0-300 mg/mL for 24 h in 37 °C. The cell viability (CV) and length of cell projections (LCP) for each group were observed, analysed, and standardised using control as a baseline (CVs and LCPs). The Fuzi and AD relevant genes were identified basing on databases, and the molecular mechanism of Fuzi anti-AD was predicted by network analysis. RESULTS: Experiment results showed that Fuzi in 0.4 mg/mL boosted LCP (LCPs = 1.2533, p ≤ 0.05), and in 1.6-100 mg/mL increased CV (CVs from 1.1673 to 1.3321, p ≤ 0.05). Bioinformatics analysis found 17 Fuzi target genes (relevant scores ≥ 20), showing strong AD relevant signals (RMS_p ≤ 0.05, related scores ≥ 5), enriched in the pathways regulating axon growth, synaptic plasticity, cell survival, proliferation, apoptosis, and death (p ≤ 0.05). Especially, GRIN1 and MAPK1 interacted with APP protein and located in the key point of the "Alzheimer's disease" pathway. DISCUSSION AND CONCLUSIONS: These results suggest that Fuzi may have therapeutic and prevention potential in AD, and GRIN1 and MAPK1 may be the core of the pathways of the Fuzi anti-AD process. Fuzi should be studied more extensively, especially for the prevention of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Diterpenos/farmacología , Medicamentos Herbarios Chinos/farmacología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Aconitum/química , Enfermedad de Alzheimer/fisiopatología , Animales , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Diterpenos/administración & dosificación , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA
18.
ChemSusChem ; 13(20): 5549-5555, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32812399

RESUMEN

Phenolation is a commonly used method to improve the reactivity of lignin for various applications. In this study, resinol lignin models (syringaresinol and pinoresinol) and eucalyptus alkali lignin were treated under acid-catalyzed phenolation conditions to investigate the products derived from resinol (ß-ß) structures of lignins. The phenolation products were characterized by means of GC-MS and NMR spectroscopy following separation using flash chromatography and thin-layer chromatography. A series of new naphthalene products were identified from phenolation of syringaresinol, and the corresponding guaiacyl analogs were also identified by GC-MS. The C1-Cα bond of these resinol compounds was cleaved to release syringol or guaiacol during phenolation. In addition, diphenylmethane products formed from phenol or phenol and syringol/guaiacol were found in the phenolation products. Comparatively, more naphthalene products were obtained by phenolation from syringaresinol than those obtained from pinoresinol. HSQC NMR characterization of the phenolated alkali lignin revealed that naphthalene structures formed in the phenolated lignin.

19.
Int J Biol Macromol ; 164: 2247-2257, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32798545

RESUMEN

The purpose of this study is to investigate the natural Luffa vine (LV) fiber to be effectively used as cellulose fiber reinforcing material for lightweight and decay-resistance composite materials. The physical, chemical, thermal, and morphological properties of the LV fibers, together with their microstructure are investigated. The test results conclude that the LV density, microscopic characteristics, and mechanical properties show that this crop is a lightweight (200-550 kg/m3) natural fiber with a porous structure and a high specific modulus (1.18-2.04 MPa∙ m3/kg). The chemical, X-ray diffraction and the Fourier transform infrared spectroscopy analyses indicate that the LV has a high lignin content (25.18%) and a relatively high relative crystallinity (37.18%) of cellulose, and it contains saponins, which increase its erosion resistance and hardness. The thermogravimetric analysis reveals that the fibers can stand up to 315.4 °C. Moreover, due to their kinetic activation energy of 63.9 kJ/mol, they can be used as reinforcement materials in thermoplastic green composites with a working temperature below 300°.


Asunto(s)
Celulosa/química , Luffa/química , Fibras de la Dieta , Lignina/química , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Temperatura , Difracción de Rayos X/métodos
20.
Angew Chem Int Ed Engl ; 57(39): 12911-12915, 2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-30073731

RESUMEN

Chlorinated conjugated polymers not only show great potential for the realization of highly efficient polymer solar cells (PSCs) but also have simple and high-yield synthetic routes and low-cost raw materials available for their preparation. However, the study of the structure-property relationship of chlorinated polymers is lagging. Now two chlorinated conjugated polymers, PCl(3)BDB-T and PCl(4)BDB-T are investigated. When the polymers were used to fabricate PSCs with the nonfullerene acceptor (IT-4F), surprisingly, the PCl(3)BDB-T:IT-4F-based device exhibited a negligible power conversion efficiency (PCE) of 0.18 %, while the PCl(4)BDB-T:IT-4F-based device showed an outstanding PCE of 12.33 %. These results provide new insight for the rational design and synthesis of novel chlorinated polymer donors for further improving the photovoltaic efficiencies of PSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...